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A MICROPROCESSOR BASED DISPLAY CONTROLLER*

Dr. G.A. Hamlin

ICASE, NASA-Langley Research Center, Hampton, Virginia

Dr. T.L. Boardman

Computing Center, University of Colorado, Boulder, Colorado

There have long been two problems with Computer Graphic Termi-
nals. The first involves the trade-off between dynamic motion
for limited amounts of information on refresh devices and vir-
tually unlimited but static output on storage devices. The
second involves the human engineering problem of long delays of
graphic image output to terminals across standard communication
lines. A solution to both problems, presented herein, is a
graphic terminal system comprised of local (floppy disk) stor-
age, a microcomputer, and a CRT which can be operated simul-
taneously in storage and refresh modes. This system, built
around a Tektronix 4014 CRT and Intel 3000 series microprocessor
elements, accepts segmented images from a host computer, stores
them on the floppy disk, and then accepts short control commands
causing the images to be displayed in store or refresh mode with
locally augmented three-dimensional translation, rotation, and
scaling.

INTRODUCTION

The ability to get real time pictorial output (graphics) from digital computers has
existed for nearly twenty years. Initially, such output was generated on special
purpose cathode ray tube (CRT) systems and was therefore extremely expensive both
in graphics hardware costs and demands cor the supporting digital computing systems.
The storage CRT, first available approximately ten years ago, reduced these custs
with hardware that could store graphic images on the CRT itself and be operated as
a standard teletype-like terminal.

The inclusion of minicomputers intc the refresh type (non-storage) graphics devices
has allowed them to operate as teletype-like terminals, reduced their hardware
costs, and substantially reduced their demands on supporting computing systems.
This has made storage and refresh graphics terminals similar in output character-
istics, cost, and demand on supporting computing systems (1).

There remains, however, a major difference between storage and refresh graphics
terminals. Storage devices, by their nature, can displav an essentially unlimited
amount of information, but this information can only be modified (erased and re-
written) approximately once each second. Refresh devices can display less than
one-tenth the information that storage can but can modify it many times per second
permitting smooth, dynamic motion.

This paper describes a system which utilizes the hardware characteristics of
Tektronix 4014 terminals and a custom microprocessor to produce a single terminal
which permits both storage and refresh graphics. Using the storage option, a
virtually unlimited amount of information may be displaved statically. Using the
processing capabilities and memory of the microprocessor, coupled with a local
floppy disk, a limited amount of informaction may be displayed with dynamic trans-
lation, rotation, and scaling in two and three dimensions.

*This report was prepared as a result of work performed under NASA Contract No.
NAS1-14101 while the authors were in residence at ICASE, NASA Langley Research
Center, Hampton, Virginia 23665.



SYSTEM HARDWARE REQUIREMENTS

Development of a graphics device which can display information in both storage and
refresh modes, perform dynamic translation, rotation, and scaling, and be connected
to a host computer as a teletype~like terminal dictates many hardware requirements.

The first set of requirements relate to the CRT itself. A device which is capable
of operating in both store and refresh modes, has adequate image size and resolu-
tion, and can be written at very high speeds is necessary. The Tektronix 4014
meets these requirements. It can store an unlimited amount of information, has a
280 line per inch resolution over a fourteen by eleven inch screen, and can be
written fast enough to display several hundred lines in refresh mode.

The global requirements of the microprocessor are dictated by the devices which

it interconnects: the Tektronix 4014 and the host computer which is ultimately
providing the information to be displayed. The maximum information transfer rate
to the 4014 is 100,000 bytes per second. This transfer rate should certainly be
met to maximize the information which can be displayed in refresh mode. A typical
host computer, communicating with the graphics terminal as though it were a
teletype~like device across an asynchronous communication line, will operate no
faster than 2000 bytes (characters) per second and perhaps as slowly as thirty
bytes per second.

This very low communication rate greatly influences the design of the micropro-
cessor. It dictates that images to be refreshed must be stored in the micro-
computer. Further, transformations to these images must be performed in the micro-
computer to permit their display in a dynamic, real time mode. Although not
immediately obvious, images to be displayed in storage mode should alsc be stored
in the microcomputer. If this is not done, user directed elimination of a portion
of the stored image will require the entire remaining stored image to be retrans-
mitted across the slow communications line.

The resulting terminal architecture is shown in Figure 1. It is based around a
bit slice microprocessor (Intel 3000 system) configured to execute two million
instructions per second to meet the requirements of three dimensional image trans-—
formation in real time. In addition, it includes an asynchronous, serial communi-
cations interface to the host computer, a floppy disk capable of storing 250,000
bytes of coded image descriptions, refresh buffer memory, a multiply/divide/trig-
ometric function unit, and a 100,000 byte per second interface to the Tektronix
4014 CRT.

As detailed below, images generated by the host computer are transmitted to the

serial interface in a character-coded form, converted to a sixteen bit internal

representation, and stored as display units called segments on the floppy disk.

The host then transmits highly abbreviated commands to cause the segments to be

moved from the disk to the refresh buffers, transformed by matrix processor pro-
grams, and displayed in either refresh or storage mode on the Tektronix 4014.

The details of the image generation and control commands available to the host,
their microprocessor representation, the microprocessor hardware, and the graphics
system implementation software are described in the following sections.

USER GRAPHICS COMMANDS

The microprocessor is microprogrammed to present to the graphics user a virtual
graphics display processor capable of accepting the definition of a tree structured
image, storing that image, and displaying any or all parts (subtrees) of the image
either in refresh or storage mode on the Tektronix 4014. Images are defined to the
display processor by a series of calls from a higher level language (FORTRAN or
PASCAL) to a set of graphics subroutines whose definition and capabilities reflect
current display technology (2). Each subroutine call represents one user command.
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Adherence to this syntax is enforced by the system. An appropriate error message
is issued when the syntax is violated by an illegal sequence of subroutine calls.
It would be more syntactically pleasing to incorporate these graphics commands into
the syntax of the programming language, but writing a preprocessor or modifying the
FORTRAN or PASCAL compiler is beyond the scope and purpose of this project.

The tree structured definition of an image consists of a collection of user numbered
graphical SEGMENTS. Each SEGMENT defines a sub-image and is the only unit that
possesses a name (integer) and graphical attributes. A SEGMENT consists of this

set of graphical attributes (described below), a 4x4 homogeneous coordinate trans-—
formation matrix, a sequence of primitive graphics commands, graphical attribute
modifying commands, or CALLS to other segments. The CALL mechanism is used to
generate the tree structure of the image. Since there is no conditional branch
graphics command, recursive calls would produce infinite loops and are not

allowed.

There are seven segment manipulating user commands. The OPEN(N) and CLOSE(N)
commands specify the initiation and termination of the definition of a particu-

lar segment, N. Opening a segment which already exists causes its contents to be
erased immediately after the new definition of the segment is terminated. The
APPEND(N) command is used in place of the OPEN command to add information to

segment N. The DELETE(N) command causes the segment itself, as well as its con-
tents, to be deleted. The DISPLAY(N) command causes the image subtree with root at
segment N to be displayed on the Tektronix 4014 screen. The BLANK(N) command causes
the subimage to cease being displayed. This will not occur immediately for segments
being displayed in storage mode, but will occur upon encountering the next ERASE
command. The CALL{(N) command czuses an instance of the subimage defined by

segment N to be displayed within the current segment.

Associated with each segment is a set of graphics attributes and transformations.
The values of these attributes and transformations are set to initial values when
the segment is created. The user may change these values at any time after he has
defined and closed the segment. These values normally apply to an entire segment
and are compounded with the corresponding attributes of all segments called from
the segment. The attribute values are specified by the following ten attribute
modifying commands:

BLINK(N,rate)—--gives blink rate of segment N.

INTENS(N,value)--specifies intensity value of segment N.

LINETYPE(value)--specifies linetype (dotted, dashed, etc.) of vectors in segment N.
TRANSLATE(N,X,Y,Z)--causes the transformation matrix associated with segment N to
translate the image by an amount (X,Y,Z).

ROTATE(N,axis,angle)--causes the image to be rotated about the specified axis.
SCALE(N,axis,amount)--causes the image to be scaled about the specified axis by the
specified amount.

PERSPC(N,X,Y,Z)~-causes the image to be displayed in perspective, with viewpoint
located at (X,Y,Z2).

INTMTX(N,A)--specifies a 4x4 matrix A to be the transformation matrix associated
with segment N.

STORE(N)--causes segment N to be displayed on the 4014 in storage mode.
REFRESH(N)-~causes segment N to be displayed on the 4014 in refresh (write-through)
mode.

The user may wish to have one or more of these attributes change as the processor
is displaying the segment. This may be prescribed by issuing any of the above
attribute commands while segment N is still open. This causes display instructions
to be generated and inserted into the segment which change the associated attribute
at that point. The changes remain in effect for the rest of the segment or until
again changed.

Thus the PICTURE CONTROL user commands can be used in two different ways to generate
either segment header values or picture control instructions. Thus the user can,
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for example, assoclate transformation with each called subpicture (segment) and
also associate transformation with each CALL itself. Also, by using PUSH and POP,
the user can optionally cause the transformations to carry over from one subpicture
to another. There is no universal agreement on which of the several possible
alternatives to transformation control 1is best. A discussion of the advantages
and disadvantages of each may be found in Thomas (4).

The actual image in a segment is described by graphic primitive commands. The
POSITION(X,Y,Z) command causes the CRT beam to be moved to coordinate (X,Y,2) in a
blanked mode. The DRAW(X,Y,Z) causes the beam to draw a line of the current line-
type from its current position to position (X,Y,Z). The TEXT(string) command
causes the text string to be displayed at the current beam position using the
current symbol height. The ERASE command causes all segments in storage mode to
be erased from the Tektronix 4014 screen, and only those which are now in DISPLAY
mode to be redrawn.

During operation, the graphics processor maintains a CURRENT trangformation matrix
and a CURRENT set of attributes. This data is automatically pushed onto a stack
each time a new segment is begun. The new segment attributes and transformations
are compounded with the CURRENT ones to become the new CURRENT attributes and
transformations. The stack is popped after a segment is finished. 1In addition,
the PUSH and POP commands can be used by the user to push or pop the CURRENT
attributes and transformations from the stack.

A final graphic primitive command, the S4014(string) command, is used only with
segment zero. No other primitive graphics commands or attribute commands may be
used with segment zero. This command is included for compatibility with existing
4014 software. 1t places the string of characters, assumed to be valid 4014
control and data characters, directly into segment zero. The attribute commands
may not be used with segment zero, which is assumed to possess the default attri-
bute values. Of course, the 4014 control characters in the S40l4 command may
change these attributes, but automatic multiplication of all coordinates by the
current transformation matrix is suppressed when processing segment zero.

This graphics processor is basically a display processor. It does, however, have
some user input commands. The XHRON(X,Y,Z) command causes the 4014 crosshair
cursor to be turned on at position (X,Y,Z). The XHROFF command turns off the
crosshair cursor. The ENQXHR command causes the 4014 to send to the user program
the (X,Y) coordinates of the current position of the crosshair cursor. The
NEQBEM command causes the 4014 to send to the user program the current (X,Y)
coordinates of the CRT beam.

REVIEW OF MICROPROCESSOR ARCHITECTURE

As indicated in Figure 1, there are four hardware requirements of the display
controller: communication with the host computer across a low speed serial,
asynchronous line, storage of image segments on a floppy disk, application of a
transformation matrix to coordinates, and communication across a 100KB parallel
connection to the Tektronix 4014. In addition, four software tasks must be per-
formed: reformatting of image descriptions from the host into an easily manipu-
latible form, interpretation of host control commands (display, store, replace,
translate,...), disk segment management, and user input processing. In order to
reduce the hardware complexity, reduce the logic package count, and provide a
flexible means of implementing the software functions, a microprocessor system
was developed.

The microcomputer, based around Intel 3000 series elements, is shown in Figure 2.

It includes a sixteen bit arithmetic vnit (eight two-bit slices), a next instruction
unit capable of accessing 512 sixtv-bit words, and an interrupt unit capable of
handling eight external devices. The sixty~bit instruction word is divided into

the following functional fields:




(4) Control of Carry Inputs and Outputs to Arithmetic Units
(7) Next Instruction Address Function
(16) Mask Input to Arithmetic Units

(7) Arithmetic Unit Function

(16) Bits Used to Control External Devices

(3) Bits Used to Select External Device Being Activated

(1) Disable Interrupts Between This and Subsequent Instructioms
(1) Disable Storage of Arithmetic Unit Result

(1) Permit External Devices to Extend the CPU Cycle

(1) Branch to the Arithmetic Unit Output Value

\ (1) Store Interrupt Address
(1) Memory Enable
(1) Memory Write Operation

Details of the use of these fields are described in a paper on the microcomputer
architecture (3).

The microprocessor architecture is designed so as to provide two functions within
the display controller. First, the various software tasks are executed by the
arithmetic unit simplifying implementation, debugging, and modification of
instructions and algorithms. Second, non-time-critical logic functions are
implemented as combinations of arithmetic unit instructions replacing logic chains
in the hardware device interfaces.

The microprocessor hardware is organized to communicate with eight external device
interfaces across a seventy pin bus as indicated in Figure 3. Four of those devices
are implemented: the serial interface to the host, an extended arithmetic unit
providing multiply, divide, and trigometric functions, a disk interface, and an
interface to the Tektronix 40l4. Generally these interfaces perform handshaking

and data formatting (serial to parallel conversion) for the particular devices

with all sequencing, data storage and manipulation functions performed by micro-
instructions.

¢

IMPLEMENTATION OF GRAPHICS COMMANDS ON MICROPROCESSOR ARCHITECTURE

The implementation of the graphics commands on the microprocessor divides itself
naturally into two tasks which can logically run in parallel. The first task
resembles a small compiler. It accepts user graphics commands from the host
computer and generates a segmented graphic display list. Each numbered segment
of the list contains graphic primitive instructions describing a sub-image. This
display list is much like the object code of any programming language compiler.
The second task is an interpreter for the display list which causes the image to
be drawn on the Tektronix 4014 display. The interpreter can be directed by the
DISPLAY user command to interpret any selected segment or segments of the display
list. If one segment contains a CALL to another segment, the interpreter recur-
sively invokes itself to interpret the called segment.

The compiler and interpreter tasks communicate by sharing common data areas, con-
sisting of the segments of the display list, and a segment control table (SCT).
The SCT contains a two word entry for each segment which describes the current
status of that segment. Its format is shown below:

WAKEUP IN-USE DISPLAY DRAWN ONCE ADDRESS

NOT USED LENGTH

The wakeup bit and in-use bit are used to lock out both the compiler and interpreter
tasks from accessing the same segment at once. Both tasks compete for segment
access on equal priority.




The display bit is set upon receiving a DISPLAY host command, and informs the
interpreter that this segment should be displayed (interpreted). The address and
length specify where to begin interpretation of the segment, and its length.

A segment may reside on disk or in main memory. The compiler task generates and
modifies segments only in main memory. A segment can be arbitrarily long and is
stored in main memory in chained fixed length blocks. This length is an assembly-
time parameter to the system. The first two words of each segment storage block
contain the length of the storage block and a pointer to the next storage block
for this segment. A null pointer indicates the end of the segment.

When the compiler exhausts memory space, it calls a disk I/O subroutine to write
all blocks of some segments to disk. The disk I/0 will first write to disk those
segments which are not specified to be displayed. After this it will write seg-
ments which have already been displayed in storage mode. Then it will store seg-
ments which are to be displayed in storage mode. If main memory space is still
needed it stores segments specified to be displayed in refresh mode.

If the interpreter is called to interpret a segment which is disk resident, it
first calls the disk I/0 to read the entire segment into main memory. This means
that main memory size limits the image complexity (segment length) that can be
displayed. This design decision was made because it simplified the interpreter.
The disk is fast enough to support interpretation directly except for a worst case
segment containing many move and draw commands which are fast on the 4014.

A segment contains display commands in all but the first two words. Segment dis-~
play commands are either segment header information or display instructions. The
first seventeen words of the first storage block of each segment contain header
information describing the graphic attributes of the segment. These attributes
are initially set to default values when the segment is created, and are modified
as graphic attribute commands are processed by the compiler. The first sixteen
words of the header contain a 4x4 homogeneous coordinate transformation matrix
associated with the segment. This can be used to specify rotations, translations,
scalings, and perspective transformation on the segment image. Bits in the
seventeenth word specify the segment's intensity, linetype (solid, dotted, etc.),
symbol height (for text), and whether it is to be displayed in storage or refresh
mode. Before interpreting the display instructions of a segment, the inter-
preter task pushes the current attributes onto a pushdown stack and compounds the
attributes in the segment header with the current attributes. This compounding
consists mainly of multiplying the 4x4 transformation matrix by the current
transformation matrix.

The display instructions are classified into four groups: vector instructions,
CALL instruction, TEXT instruction, and picture control instructions. There are
five vector instructions allowing the CRT beam to be moved blanked or umblanked
from its current position to any given (X,Y) coordinates on the screen. These
vector instructions are generated by the compiler task from the POSITION X,
POSITION Y, POSITION Z, DRAW X, and DRAW END Y user commands. The full wordsize
of the microprocessor is used to specify all coordinates to sixteen bits of
precision, even though the Tektronix 4014 has only twelve bit screen addressing.
The extra bits serve as guard digits against roundoff error when multiplying
coordinates by the 4x4 transformation matrix.

The CALL instruction recursively invokes the interpreter on the called segment.
The TEXT instruction, generated by the SYMBOL user command, displays text at the
current beam position.

Seven of the nine picture control commands specify a new value for the current

4x4 transformation matrix, or any one of the other six graphic attributes. During
interpretation a new current transformation matrix is calculated by multiplying

the existing transformation matrix with the matrix specified by the picture control




instruction. The ROTATION user command causes the interpreter to calculate a 4xé
rotation matrix assoclated with the Iinstruction. The MATRIX CONTROL user command
directly specifies the matrix elements associated with the instruction.

The HALT, INTENSITY, LINETYPE, BLINKRATE, SYMBOL HEIGHT, or BEAM TYPE user commands
generate picture control instructions which cause the interpreter to compound the
attribute in the instruction with the corresponding current attribute. The PUSH
and POP user commands cause the current attributes to be pushed or popped on the
same stack used by the CALL instruction. This gives the user a way to specify
graphic attributes which change dynamically with a segment, whereas the segment
header specifies attributes which pertain to an entire segment.

As mentioned in section IV, the microprocessor hardware was designed to be
interrupt driven. The compiler task is driven by the user commands received from
the host computer. The interpreter is driven by the Tektronix 4014 interrupts.

A rather unusual method of obtaining fast response to interrupts is used. When an
interrupt occurs, the appropriate task executes one or more collections of micro-
instructions called kernels. A kernel of microcode runs with interrupts disabled,
and lasts no longer than about fifty microseconds (100 instructions). The last
instruction of each kernel saves the address of the next kernel to be executed in
a known location, and allows any pending interrupts to occur. The maximum kernel
length is determined by the frequency of interrupts from the fastest device. In
our case, the disk interrupts every sixty four microseconds and requires tem micro-
seconds to service, leaving at most fourteen microseconds. Kernels of fifty micro-
seconds give a four microsecond safety margin. Other devices are slower and
interrupt at lower priority.

Each kernel is written so that it does not require any particular values in the
general purpose CPU registers or status bits. All CPU registers except the
interpreter's stack pointer and register eight may be used as temporary storage
within a kernel, but inter-kernel results must be saved in main memory.

This results in very fast task switching upon an interrupt. No CPU status need

be saved. The hardware, upon receiving an interrupt, traps to a particular address
associated with that interrupt. Two micro-instructions branch to the address in a
known memory location associated with the interrupt. Thus task switching takes
only two microinstruction times (800 nanoseconds).

When a task finishes, it has nothing to do until receiving its next interrupt from
its driving device. At such times it puts itself to sleep by zeroing a bit in CPU
register eight which is reserved for that purpose, and branching to address zero.
Address zero contains a four instruction loop, executed in interruptable mode.

Each two instructions of this loop check the awake bit of one of the two tasks, and
branch to the address of the next kernel of the first awake task. If all tasks are
asleep, the CPU idles in this loop, awaiting an interrupt. The priority of the

two tasks is determined by which one is checked first and by the priorities of
their driving interrupts. Thus the operating system which multiprograms between
compiler and interpreter consists of this four instruction idle loop, two words at
each device's interrupt address, and the last instruction of each kernel which
saves an address.

CONCLUSIONS

The basic microprocessor system along with the extended arithmetic unit, floppy
disk interface, serial interface to the host computer, and 2,000 sixteen bit

words of memory have been built, tested, and are now operating. A number of prob-
lems occured largely due to pushing the limits of Schottky TTL logic to minimize
the CPU instruction time. Though the system is now functional, this experience
and the apparent requirements on the processor indicate a one microsecond instruc-
tion time microprocessor would be superfor to the 500 nanosecond implementation.




The 512-word instructioa space limitation and instruction branching restrictions

of the Intel 3000 have caused the most serious system problems. Currently only the
interpreter portion of the software has been implemented in the microprocessor,
with the compiler resident in the host computer. Another bank of 512 instructions
will be added to accommodate the compiler along with appropriate context switching
logic. Another type of bit slice processor such as the AM 2900 or TI 748481 would
probably have simplified the instruction programming process. Unfortunately these
were not available when the project was begun.

Short of these problems, the graphics system has been a clear success. A high level
set of host computer calls can generate segmented images, assigning them both
structure and graphic attributes in a convenient manner. Once transmitted to the
microcomputer over conventional communications equipment, they can be displayed
with the full compliment of two and three dimensional transformations available.

An essentially unlimited amount of information can be stored on the screen, and
approximately 600 vectors can be refreshed with real time transformations.

This type of graphics system supports a new class of display problem: one where
the majority of the image can be static while a portion is dynamically changing.
Experience is indicating that this represents a very common and useful class of
problem. Outputs of simulations, computer aided design and instruction, and data
reduction are a few examples of activities which benefit from this capability.

It is actually not surprising that this type of graphics system is useful. The
viewer of a dynamic image cannot perceive more than several hundred changing
vectors so more refresh capability is generally not useful. Those changing
vectors often, however, must be placed in the context of fixed images in order

to maximize the information transfer to the viewer. It is hoped that such systems,
relying on available microprocessor and display technology as demonstrated in this
paper, will become generally available.
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